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Abstract

~ It has been found that fixed error dead-zones
s defined in the existing literature result in
erious degradation of performance, due to the con-
ervativeness which charadterizes the determination
£ their width. In she-pleseat paper, variable
width dead-zones are derived for the adaptive con-
trol of plants with unmodeled dynamics. The der-
ivation makes use of information available about
the unmodeled dynamics both a priori as well as
during the adaptation process, so as to stabilize
the adaptive loop and at the same time overcome the
conservativenass and performance limitations of
fixed-dead zone adaptive or fixed gain controllers.

AD-A144 387

1. INTRODUCTION

Research in recent years has :bos\ that adap-
tive control algorithms which, under ideal assump-
tions, have beea proven glcbally asymptctically
stable, indeed exhibit cnstable behavior in cir-
cumstances under which those assumpticns are even
slightly violated. Of the two instability mach-
anisms identified for these algoritims, -commoaly
referred to as "gain” and "phase” instability mech-
anisms (i],- the former is more unavoidable and is
triggered by the controllier parametar
drift which occurs as a rasult of nonzerc output
errors. These are a consequence of the fact that,
in the presence of unmodeled dynamics and/or
(persistent) disturbances thers can be no pexfect
(tzansfer function) matching between the compensaed
plant and the reference aodel over all fraguencies,
evean if "sufficiency of excitation” for the "nem~
inal” model order is guaranteed.

Perfect matching, on the other hand, transixes
into zero output (tracking) error, under ideal as-
sumptions, and has bSeen the basis for the paranetar
adjustaent laws; only when the Output error is zero
does adaptation stop. Clearly, then, by design,
any nonzere output error is instantanecusly attrib-
uted £O parametar errors. Furthermore, thers is
nothing in the Mathematics of the adjustment sech-
anisms, as they currentiy stand, to prevent gain
drift due tO error sources other than parameters,
as for example happens aven in cases of "exact
modeling”, with "sufficiency of excitation”, where
convergence to the "desired” parameter values has
Deen achieved momentarily: extraneous
disturbances entering at that point can causa the
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parameters to drift from their "desired” values.

Consequentiy then, the zero tracking error
requirement must be suitably relaxed. The ration-
ale is that no parameter adjustaent should take
place when the output erxor(s) are due to disturd-
ances and/or unmodeled dynamics. TRis can de
achieved on an existing algorithn by a dead-zone
noniinearity, in the parameter adjustneat law,
whose width depends on the contribution of the
disturbances and/cr unsodeled dynamics to the out~
put error.

The idea of & dead-zone nonlinearity in the
parameter update law to avoid the effacz of distxo-
ances on adaptation was first introduced for in-
direct adaptive algecrithms by Egarde in-i980 [2)
and was later amplified by Samson [3]. Also. in
19§2 Peterson and Narendra used a dead-zone non-
linearity to prove stadility for a class of direct
algorithms in the presence of bounded disturbances
with 20 unmodeled dynamics [4]. However, the width
of the dead zone was chosen to be constant and had
to be based on a very conservative bound so tihat it
vielded only marginally stable systems with ex-
tramely poor model tracking as the examzies a [4]
seen to suggest.

Consequently, cobtaining non~fixed accucate
hounds for the disturbance and high-frecuency
dynamics coantributions to the output error is cIu-
cial to overcoming the conservativeness of the
dead-zone width which they define. This degsends on
the-ability to translate frequency domain
magnitude bounds, most naturally expressed by

Lz-ncm into time-domain magnitude bounds
of instantaneously measured quantities, 2ost nat-

¢

urally exprassed by L= oz, for our purposes, L°-
norms which ara much less conservative than L -
norms.

This paper discusses the use of a deadzone,
whose width is acdjustable on line, to adaptively
control a plant with unmodeled dynamics, with the
objective of maintaining its stability and 3unizi-
zing tne adverse effects of a conservative dead-
zene width to its performance. Due td space congid-
erations we do not treat the case of cutput disTo~
ances here; alsc, the topic of disturbances addi-
tionally includes a fixed disturbarces Tejection
sechanism that introduces a modificaticn in the has-
ic structure of the MRAC system $O is To MeIas
sepazate attention.

Seczion 2 of this pADer CORTALNS A generic naIm
cranslation osroblem and develoos a set of toois
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Section 3 applies tie

required for its solution.
resuits of the pravious section to the familiar LV

algorithm of the Model Reference type. Otiher algo-
zithns can be treated similarly. Section 4 discus-
ses the stability of the variable width dead-zone
adaptive system and, finally, Section 5 contains
the concluding remarks.

2. MATHEMATICAL PRELIMINARIES

In this section wa davalop the necessary tocls
for the definition of the variable width dead zone.
As was already pointed out in the introduction, the
objective is to f£ind satisfactory bounds for the
coneribution of the unmodeled dynamics to the out-
put of the adaptively controlled process, so thatc
an "accurats” error dead-zone caa ba defined.

The procass cowmplete with unmodeled dynamics
is assumed to be of the Doyle-Stein type, with the
nigh frequency dynamics entering multiplicatively;
i.e.

gi(s) = qp(s) (1+L(s))

vhere g(s) is the actual plant transfer function,
q (s)its modeled part and 2(s) the unmodeled dynan-
xc: Typically, a bound on the magnitude of L(s)
is assumed to be negligible for frequencies below
cxossover, becoming only appreciable for higher
frequencies; no phase information can be assumed.
The problem is then to find a bound for the output
of the adaptively contsolled process due to L(s).
This is achieved in two stages, as the following
subsections indicate. We further remark here that,
due to feedback in the adaptive loop, the unmodeled
dvnamics indirectly influence all the state var-
jables of the nominal adaptive loop, with the mag-
nitude of their contribution depending on the nacxe
of the inputs to the plant.

2.1 Transfer Function Magnitude Bounding

In this subsection we will derive a bou <« ¢(w)
on the magnitude of the frequency response of a
special class of transfer functions, that typically
arise in MRAC systems. Consider an LTI transfer
function G(8.s) of the form

L(s) }

G(8,s) = M(s) {m) {2a)
where
M(s) is a completely known sublc'r.‘n transfr
function
14A(@,8) = [ (s4p,(8)) (25)
is=]
053,
9 unknown constant paraneter vector with
specified bounds (2¢)
2,@c0 isl,...,n (2a)
23w e £ @) for known & (w)> 0 (2e)

Note that wnen 1(s)=0, G(Q,s)=M(s), and cherefore
stabie. In the contaxt of MRAS, G(§,s) represencs

the actual transfer fuaction of a zlant with feed-
back, designed to Icllow a reference model which is
prescribed by the tTansfer function M(s). In the
absence of unmodeled dynamics, i(s), perfect matcn~
ing is possible.

When L(s)¥0, the stability of G(8,s) can be
ensured by (requiring) enforcing the condition

LeA(8, jw) (1+L(3w) 190 (3)
™his condition is satisfied if, for all 2 in the

space of admissible parameters =he follodfing is
true:

2wl 2 @ < S TPNLITIEIN )

Assuming this condition is true, we proceed
to derive an upper bound on |TG(8, 3w,

para-~
metrized by |[M(jw)||. From ega. (2),
. £ (jw)
G (8, jw) =M (3w} {D(g.ju)-vl(jwn\(g.jul} (5)

wvhere D(8, jw)E1+A (€, jw)

Next, represeating L(jw), D(8,jw) and A(8,jw)
in polar form,

®
Lt | led

T
Hl)(g.:‘t.-)lloj BT+
' ite, (B)re

@, 3w | 1< M3 | ]

1L (GuA@, jw |]e
(6)

An upper bouné for |! G(.,J-) | can be found by
maximizing and nixu’a:.zmq respectively the values
of the numerator and dencminatcr terms in (6). The
denominator achieves its smallest value if the
vecters i(jw)a(8,jw) and D(§, ju) are oppositely
aligned and, in acdition, hi.()-)l. achieves its
maxizum allcwable value for the 2-interval of in-
terest. The above twc condéitions are sactisfied if
the phase angles are such that cl-ck@-@p(g)w

and lll(ju)H-l (w). Note that condition (4) for

the stability of G{2,s) ensures that
Hﬂ. (Jw)A(8, 3w) | [<i1D(2. e} || and, indeed, the

ehoice ||L(3w) ]!} =i () guarantees mininization of

the denominator of G(Z,jw) with stability maintained.
Unlike the denominator, the anumerator magnitze
is x.ndnpcnd-m-. of 3 S and is directly maximized by

choosing ,IL(Jm)H-l {(4) and 3 ’ appropriately to

satisfy zhe donon;m:or Shase ansle cendition.
Consequently, from egqn. (6) we can now write an up-
per bound for G(€.w) as follows:

l (W)
MG | ,1D(g, 3u>|.-r (@) | [ACE, Jw) |
m

Finally, we say search the space of allowable vaiues
of § to determine the desired transfer function
bound

11618, jw) ] |=]}

dw 2 aax i3G50 ! )

e




and egns. (25) and (26}, it is straightforward to
conclude that

Fwe 2 (27

From this point on, the proof uses standard
arguments, for the boundedness of u,w,{, as they
firsc appeared in (7] and outlined in {4]. We only
resark here that, in our case, |vit)|<|E(t)| and,
furthermore, v(t)=0(sup||w(t)||], as follows from

0T

eqgn. (22) and fig. 4.” The reader is again referzed
to [6) for all the derails of the stability
arguments.
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6. CONCLUSIONS

A varisble dead-zone nonlinearity was introduced

in a standard aodel refezence adaptive control
alqorithm to maintain its stability in the presencwm
of unmodeled dynamics. The variable width dead-
zone is determined on-line on the basis of prior
information about plant parameter bounds and un~
sodeled dynsmics as well as about information ob-
tained during adapcacion. Besides saincaining
stability, the algorithm is able to overcome the
conservativeness of fixed dead-zone on exponential
forgetting factor adaptation mechanisms (4),(8], as
simulation results show. Due to space liaitations,
those sxre deferred until the conference presenta-
tion of the paper.
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In the following subsection we will use ¢ (w) in
order to bound the output of G(9,jw!, in an ab-
solute value sense, given an input x(t).

2.2 Absolute Value Output Bounding

Consider the system shown in figure 1 with
input x(t), output y(t) and G(0,s) as defined
before

() y(t)

——neead G (8,3) e g(8,t)

Figure 1:
By taking the inverse lLaplace transfer of G(8,s),
wa obtain

e, 0l - geg.0) )

Furthermore, since g(9,t) rzepregents a linear-time-
invariant system, by dafinition of G(8.s), the
output y(t) is given by

y(e) = g(8,t)e x(t) =
=
-f 4t g(8,t-TIx(T) (10)
-

Substituting now in (10) for g(@.t-T) the

. expression for the inverse laplace transform of

G(8,s) and recalling, further, that G(8,s) is a
stable transfer function, we can write

* -
yie) = f“z%' ] a5 6(8.8 T x(1) .
- j -0 -
3

- e t
f W GIY, jure ¥ far x(re” 3T
- {11)

Nexz, with u(t) representing the unit step
function we have

[}
s

)

£ ‘

F {x(t)u(-d‘f ax x(r)u(—r)c‘jm-L ot x(rie ¥
C ]

(12)

Define Fix(t)u(~TI} with the symbol X{jw} and sube-
titute ia (11l). Then

L]
1
yie) o 3= fdu (g, 3w X (Jwra®*® (13)
" e

By the Cauchye-Schwartz inequality it Zollows frzom
(13) <has

R o R

=
1 ; P o= N
{yte) i:—.;/dw LG(E @ L IR Ge) | (24)
-l

But from the previous sudbsection %(.) was deter-
mined such that

$w)> 168, juw) || (15
Hence, (14) be .
L]
lyterlg %;f aw W) [{X(3w {] = 7(e) ae)
-y

which admittedly represents a looser bocund on the
absolute value of y(t) than eqn. (14}. However,
the bound 7(t) can be calculated more readily. The
inequality (16) has the following interpretation.
Given & bound on the frequency cesponse of a syse~
ten, a bound on the magnitude of its output due to
an input x(t) can be calculated at any instant of
time by using the time history of the svstem input
up to and including that instant of time. We note
here again the time dependence of X(jw) acsording
to eqn. (12).

3. MRAC WITH RELAXED TRACXING ERPOR CIZTERION

In this section we employ zhe resulis of section
2 to derive & variable dead-zone widsh for the
parameter update of the N-~L-V algorithm, which
overcomes the conservativeness of the *fixes width
Peterson-Narendra scheme [4]. 3efore we :roceed,
we briefly review the concept cof paramecer update
using a dead-zone nonlinearicy.

In [4) the authors have shown stability of the

system depicted in figure 2 delow.

Lo o« /A ”
T 4D
vit)

Figure 2:

In 2ig. 2 the standard notation is used, with Xk
representing parameter errors, ; filtered .auxii-
iary) state variables v(t) sutput dezerministic
diszurbances of bounded magn:utude, differestiacle
and uniformly continuous, € the output ersor with
disturbances; N represents the (par: of the) error
actually used in the parameter adaptive law and is
obtained by @ passed through the dead-zone of width
E.

It is not our purpose lere O fresant the
details of how the above error systaz as siown in
fig. 2, is arrived at. The reader is instead
referred to (4] for those as well as =ne s:apility
proof of that aodified algorizhz. We sizpl: presert
here the parameter adaptive .awg, with ae deaée
zone nonlinearity in their simplest form, for the
sake of completing zhe Proo.en iescription =nien
forms the basis for zne developmenis L tne present
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paper. The parameter adjustment is as described

by egns. (17) below.
k(t) = Kqe) = —SIENLE) a0
1+«ag (£)5 (L) (17a)
with nee) = |6 leter|>e
0 lecer|<E am)

where E reprasants the width of the dead-zero.

Although in {4] the discussion is not particularly
enlightening as to how exactly the magnitude E is
decided upon, it is the present authors'’ .
conclusion that most likely, in [4]

E> |lvie]], = max|v(e)] (18)
T

and, therefore, is very conservative as the same
authors have pointed out in [5]. We next proceed
to analyze the original NLV Model Reference algo-
rithn, as represented in Fig. 3, with the plant
dynamics now replaced by the actual plant

P(E,s) (1+L(s)].

by} !

Figure 3:

“he component P(€,s) incorporates =he designer's
chowledge of the dominant, low f{requency response
of the plant, including a vector 2 cof uncertain

“he standazrd MRAC assunptions aoout the glant nold

zaradeters, known only within zrecomputaple bounds.

v

for P(9,s). That is, the desicner knows '

(i) an upper bound on the relative degree n* of
P(8,s)

(ii) an upper bound on the degree n of F(8,s;

(iii) chat P(8,s) is =unimum phase

(iv) the sign of the high frequency gain of 7(£.s)

The L(s) part of the plant represents the (multi~
plicative) unceztainty associated with the nominal
plant P(8.s). This uncertainty is due to high fre-
quency dynamics, which are assuned of unspecified
structure but satisfy a magnitude constraint
Hegw|]< lo(w). as already mentioned. Further,

we note that the “"actual” plant representation
P(8,s5) [1+2(s)) will not in general satisfy anv of
the four standard assumptions listed above. This
fact becomes pivotal in the inability of the adap-
tive controller to acihieve transfer function matche
ing between the compensated plant ané the referece
aodel. As a result, it becomes impossible for
general inputs to drive the tracking (output) er-
ror to zero. However, one may expect the tracking
eXror to be saall, if the plant is excited by sig-
nals with dominant low frequency content over the
range where P(S.s) is a good approximation to the
actual plant transfer function.

In what follows we will next show that the
error system underlying the structure in figure 3 L
differs from that of the same structure, as shown ‘
in £ig. 2, where L(s)=0, only by an additive per-
turbation term in tie cutput. This term can be ;
bounded using the results cf Section 2 and a var- }
iable widih dead-zcne can be defined for the adap- {
tation mechanism. Stability of the scheme is
subsequently discussed in Section 3. ’

We star: by considering first the cass where
L(s)=0 in Figure 3.. In this case the standard H

DI LS AIRN . o U TS SRR W

MRAC assumptions about the plant are =rue. There
exists a vector k*(€) of fixed gains which, when
applied to the system, results in matching of the
compensated plant transfer function with that of
the model. We adopt the shorthand notatioen CJ. ({:})

and C.(8) to indicate the LTI transfer functions
L] ‘e . . N
clu;l(g)) and C, (ko (8),k;(8)) respectively. uow

assuming L(s)#0 byt maintaining the same defini~-
tions of C, (k7 (8) = C,(8) and C,(kI(E).kj(2)), =

1
<, (8) based on the reduced model, we may derive n
an expression for the error system as follows, !
where for convenience, the argument's' has been E
suppressed throughout. 4
Y C, (8)P(8) [1ek)
L e L —
R 14-c1 (§.)<:2 (E)P(B) [1+R)
cl(_e_mg) CI(Q)P(S)
" T @, @r® " T, @I, P
2
1+C, (E_)cz (2YP(9) {Llea] {1®)
-
3y definition of Cl(-.'.;) and C. (&) we nave .

2.19P®)

=, e o !
-

1
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Using this fact and introducing the notatioa
A8) 2 cl(e)cz(g_);(g) we can write eqn. (19) in a

more compact form as

Y, £
-%-M~ W 21)

Next, defining K(t) « k(t)-k", referring to fig. 3
and interchanging time domain and transformed
quantities, we derive an expression for € as given
in eqn. (22).

¢ Y Y
E=q+ ia"‘ig -ET\_:_-_-% - R
(22)
=T L T
"B S €

For the case whare L(s)=0, this result reduces to
the standard augmented MRAC error system of
Narendra, Lin and Valavani with .-l « M. The new
erzor systam is shown in Figqure (4) with a vaziable
dead zone non-linearity added to the output signal
path,

vt

M.—;.
1+ag) [1+1]

We cbserve that the system is of the form shown in

2ig. 2. In order to specify a stable adaptive

law, we need to find a bounding signal E(t)>|v(n)|ve.
We zay redraw the error system using the

fact that K=k"-k and the input to the plant in

Tigure S5 is _.k.r! +r. The resulting represen-
tation is shown in Figqure 5 below.
From precomputed bounds on §, bounds on k* can be
precomputed also. We now aake the definition
K* = |nax x*| (23)
8

where the maximization over § is carried out in-
dividually over every component of k*. Using (23)
in conjuction with the results of Section 2 it
readily follows that an upper bound E(t) for v(=)
can be computed. More specifically, we can write

NG WNPERN SR P SO e

e

=
2n=-2
E(t) sfe(u) {3U(ju)]~ 1 !E.(ju)}ij}m (24)
Y iml 1 -

where eqn. (12) has been used for caliculat:on of
the transforas T(jw) and '-?i(ju) for the ingut u(t)

and signals ui(‘.') Tespectively. An adastation law

of the form descrided in eqn. (17) can =1e= be
employed with the width of the dead zone defined
by eqn. (24). The resulting scheme is stable and
an outline of its stability proof is given in the
following section.

S. STABILITY

The stability proof of the proposed a.gorithm
with variable dead-zone follows along very similar
lines for the most part with that in (4]. Howevaer,
in the present case it is additionally conditioned
on the refersnce aodel definition and t-e admissihle
parameter set. as eqn. (4) of section 2.1 implies.
More specifically, the space of admissible para-
meters is implicitly defined through zhe reference
model by eqn. (4), in conjunction with condition
(2¢c) and is such that the desired (class of) ref-
eTence model(s) zemains stable in the presence of
the unmodeled dynanmics L(s) of the pilant. This is
4 standazd and reasonable assumption zade ia the
design of all fixed zazameter controllers as well.
Due to space considerations we will not elad>orate
on this further but will instead refer =he reader
to {6] for more dezails.

Consequently, given egn. (4), whick is fun~
damental even for a non-adaptive design, the effect
of unnodeled dynamics can be Tepresented as an out-
Put perturbation v(t) as suggested in ecm. (22) and
depicted in fig. 4. v(t) is the output =f a statle
linear system which is bounded for bounded inputs.
We next proceed to outline the steps for proving
boundedness of X,u.;,w and the output arrTor €.

The boundedness of XK follows direcz.y fro=
the standard Lyapunov functiocn definition

(V(K) = -:— ("%) an¢ tne adapracion law .17 in

conjunction with eqn. (22) wnere E(t) is defined. ,
Also, from the definition of zhe dead-zcne, the

tern ETE can be sounded above and belcw =y bounds
of the form
T <iRTrle £ [(E(2)] - 2) !
fllﬂ(t)lll_t.g_*v(:) SIRTRIS LRI} KT evin) !
(25)

where £ () and £_(-) are continucus functions
&

of E(%).

Next, by the definition of the Lyagunov func-
tion, its time derivative, in conjuncticn with the
adaptation law given 2y egn. (l2a), can >e written
as -

2

Ve R - =N (26)

from the fact that

L]
j HT)aT <o

°







